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FLEXURAL PERTURBATIONS OF FREE JETS OF MAXWELL AND DOI -EDWARDS LIQUIDS 

A. L. Yarin UDC 532.522+532.135 

Flexural perturbations of high-velocity free jets of drop liquids moving in air 
are reinforced by the fact that the air pressure on the concave sections of the 
jet surface is greater than onthe convex sections. The linear and nonlinear 
stages of development of flexural perturbations were studied in [i-5] for viscous 
Newtonian fluids. The effect of elastic stresses in the fluid on the growth of 
flexural perturbations of jets was first examined in [6], where it was assumed in 
an analysis of the growth of small disturbances that surface tension was constant 
along the jet, i.e., the investigators actually studied a tensed string. The stud- 
ies [7, 8] examined the linear stage of growth of flexural perturbations of jets of 
Maxwell liquids. Our goal here is to analyze the dynamics of long-wave flexural 
perturbations of jets of viscoelastic fluids in both the linear and nonlinear 
stages of development. The rheological behavior of the fluid is described by two 
models - the phenomenological (Maxwell) model and the physical-molecular (Doi- 
Edwards) model. It is shown that the disturbances are oscillatory in character in 
the nonlinear stage of development. Meanwhile, the results of calculations per- 
formed with the Maxwell (M) and Doi-Edwards (DE) rheological models in the given 
problem agree with each other quantitatively as well as qualitatively. 

i. We will examine a free jet of a drop liquid moving at the velocity U 0 in air. In 
the undisturbed state, the axis of the jet is straight, while its cross section is a circle 
of radius a 0. The densities of the liquid and air will be denoted by p and Of, while the 
surface tension of the liquid will be denoted by ~. The liquid is assumed to be viscoelas- 
tic. As usual, the relationship between the deviator of the stress tensor o' and the kine- 
matic and geometric parameters is determined by the rheological equation of state. From 
among rheological equations of state for concentrated systems in the literature, we will 
choose the two with the clearest physical meaning. The first, the Maxwell rheological equa- 
tion, determines the deviator of the stress tensor in the form [9] 

t 

o 
m~ 
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where p is the viscosity at zero shear velocity; 8 is the relaxation time (~/e is the elastic 
modulus); B~(t) is the Green tensor, accounting for deformation from the configuration at the 
moment �9 to the configuration at the moment t; ~ is the metric tensor. 

The physical meaning of Eq. (i.i) is clear: it describes the effects of the exponentially 
deCaying memory of the liquid, lowering the elastic stresses in the liquid. Equation (i.i) 
was written for the simplest case of one relaxation time. 

The second rheological equation of state, describing the behavior of concentrated solu- 
tions and melts of polymers, was obtained by Doi and Edwards [10] within the framework of 
molecular physics. It accounts for the presence of topological restrictions - neighboring 
macromolecules which actually surround a given macromolecular in the form of a tube and leave 
it only with the possibility of diffusion. The DE equation has the form [10, ii] 

t 

o ' ( t ) =  ~ ( t ) = G 0  ~ 8 dxexp t - - x  fd2uo [Fz(t)'u0][F~(t)'u0] ~ "  
Jodd=X joaa=~ z~j~Oj _ - - - ~ - j  J 4a , IF~(t)'Uol ~ , ~= ~ a o O  ~. (1.2) 

Here, summation is carried out over odd j; u 0 is a unit vector randomly oriented in space 
(fd2~o denotes averaging over all possible directions of u0) ; F~(t) is the tensor of the 
gradient of strain from the configuration at the moment T to the configuration at the moment 
t, The elastic modulus of the liquid G O and the spectrum of relaxation time 8j are calcu- 
lated by means of molecular parameters [10]. All of the molecular characteristics in the DE 
model have now been determined experimentally for several systems, while the predictions of 
the model for standard theological flows agree satisfactorily with the experimental data 
[11-13]. Equation (1.2) was obtained for the characteristic times t o ~ 81 and strain rates 
~8[~; if t I ~ 81 or if the strain rates are much greater than 8[ i, then Eq, (1.2) is invalid, 
and it is necessary to consider the consequences of "rapid" relaxation processes [14]. The 
values of characteristic time at which Eq. (1.2) is valid lie approximately within the range 
t o ~ 0.01-0.1 sec for solutions of polybutadiene and polystyrene with concentrations of about 
10-30%. 

2. As is known [15], jets of viscoelastic fluids may be characterized by longitudinal 
surface tension (in general, relaxing). To account for the possible existence of longitudinal 
surface tension in a jet undergoing bending, we will assume in the genera ! case that in the 
previous history of the jet (--oo ~ T <~. t (t > 0)), flexural perturbations developed in the pres- 
ence of tension of the jet along its axis at --co ~.~0. Thus, at t > 0, the jet will be 
bent with longitudinal tension. The tensor of the strain gradient 

F~ (t) = F* (t).F~ (t). (2.1)  

Henceforth, the asterisk denotes tensors which describe bending deformation, while the zero 
denotes deformation by axial tension. 

Att>0 

F~ = F~ z < 0 ;  F~  ~ > 0 .  (2.2)  

The Green tensor is represented as follows with allowance for (2.1) 

B (t) r (t) r (t) * o , ,  - - - -  �9 = F ~ ( t ) . B T ( t ) . F ~  (t ) .  ( 2 . 3 )  

By using (2 .2) ,  we obta in  the fol lowing from (2.3)  a t  t > 0 

* 0 *T 

B~(t)=F~(t).B~(0).FT (t), x<0; (2.4) 

B~ (t) F* (t). r:" (t) * "~ = = B~ (t) ,  > 0.  

Inserting (2.4) into (i.i), we have the following at t > 0 

0 t 

0 

(2.5)  

Let us isolate the part AT(t) in the bending tensor of the strain gradient at t > 0, 
< 0. This part of the tensor is due to the increase in flexural perturbations. Accord- 

ingly, we find 

�9 ~ T t . F:(t)----g + A~(t), n*(t) g=A~(t)+A~()+A~(t).A~(t) (2.6) 
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Thus, by means of the first equation of (2.6) we obtain 
0 0 

�9 T t + [B ~ (0) - -  g] .A: (t) + A~ (t). [B ~ (0) - -  g] .A, ( ) + A, (t) + A~, (t) + A, (t).A ~, (t)}. ( 2 . 7 )  

As a r e s u l t ,  w i t h  a l l o w a n c e  f o r  ( 2 . 7 )  and t h e  s econd  e q u a t i o n  o f  ( 2 . 6 ) ,  we change  t h e  e x p r e s -  
s i o n  f o r  t h e  s t r e s s e s  ( 2 . 5 )  t o  t h e  form 

0 

t 

+ [B~ g] .A:( t )  + A~(t) [B~ + 0'_• 

where  t h e  f i r s t  i n t e g r a l  d e s c r i b e s  t h e  c o n t r i b u t i o n  o f  a x i a l  t e n s i o n  o f  t h e  j e t  t o  t h e  de -  
v i a t o r  s t r e s s e s  in  t h e  j e t .  S i n c e  t h e  bend ing  s t r a i n s  a t  t h e  long-wave  l i m i t  a r e  s u f f i c i e n t l y  
s m a l l  t o  p e r m i t  us  t o  i g n o r e  t h e  t e n s o r  components  & x ( t )  compared t o  u n i t y ,  we o b t a i n  f rom 
( 2 . 8 )  

0 t 

- - o o  - -o~ 

Thus, in accordance with (2.9), the deviator stresses at t > 0 can be represented as the sum 
of the preliminary relaxing stress a'~ and the purely bending component described by the 
integral term: i 

~t 

-= (2.10) 
a'~ = exp (--t/0)o'~ 

A s i m i l a r  e x a m i n a t i o n  f o r  t h e  DE l i q u i d  ( 1 . 2 )  l e a d s  t o  t h e  e x p r e s s i o n  

o'(t!=a'o(t)+G. ~ ~250 ~ dzexp(-----~-)j-~{ ![~,:(-------~)-uol: : 3'; 
Jodd=: J J-=o 

(2.::) 

~ ,o 0'o(,>::o. :2  :',8'o, J ' : t  " --  . : ,  
~odd=: -~ ~odd =: 

As usual, the stress tensor in the viscoelastic fluid is represented in the form o = -pg + 

@', where p is pressure. 

3. As in [i, 3], we will study the dynamics of the growth of long-wave disturbances 
on the basis of the energy balance. If we ignore friction against the air and drag, we can 
approximately represent a planar flexural perturbation of the jet axis in the form 

H = A(t) sin (xs/ao), ( 3 . 1 )  

as long as the amplitude A(t) is not too large. Here, we adopted the notation: X is the di- 
mensionless wave number (X = 2~ao/li, l, is the wavelength of the perturbation); s is a coordi- 
nate reckoned along the axis of the undisturbed jet. The s axis is "frozen" in the moving 
undisturbed jet. 

The work of buoyancy [i, 3, 5], leading to an increase in the bending perturbations, is 
expended on the increment in kinetic and surface energies and the work of internal forces. 
The energy balance is made up for the segment of the jet 0 ~ s ~ ~ao/%. The following are the 
expressions for the work L of buoyancy during the time dt and the increments in kinetic AE 
and surface AE: energy, which obviously are independent of the rheological behavior of the 
fluid [I, 3] 

L = p:U~/oA'A ~o dt, AE = PI0" A"A' : :  ~% dt~. = ~2aAA' ~ dt, (3 .2)  AEI 
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where /0 = xa~ is the cross-sectional area of the undisturbed jet; the prime denotes deriva- 
tives with respect to t. 

It remains for us to calculate the work of internal forces in an isolated element of the 
jet during the time dt [i, 3], this work being determined by the rheological behavior of the 
fluid: 

t o LD 1 , 
(3.3) 

Here, os163 Cnn , Obb are components of the stress tensor ~ (the subscript s correspond to the 
unit vector of a tangent to the axis of the bent jet i; n corresponds to the unit vector of 
a normal n; b corresponds to the unit vector of a binormal b); Ds Dnn, Dbb are components 
of the tensor of the velocities of the bending strains D; k is the curvature of the jet axis; 
k = -H,ss/(l + H~s)3/2; the coordinate y is reckoned from the center of the jet cross-section 
D l along the normal; X = (i + H~s) I/2. 

At the long-wave limit (X < I), according to [i, 3] 

Dzz = ~-1~ t -- ky~,U~, D~ = Dbb = -- Dzzl2, ~ = -- H ssds/(i + H ~ ), (3.4) , , ,8 

It is easy to see that in the jet 

czimzz + ~nnmn~ + ~bDbb = Dlz (a~z -- ~:n). (3.5) 

To calculate the integral in (3.3) with allowance for the rheology of the viscoelastic 
fluid (2.10) or (2.11), it is necessary to determine the tensor F~(t) satisfying the differ- 
ential equation 

d---7-- = Vv (t)-F~ (t) (3.6) 

wi th the i n i t i a l  condi t ion F~(T) = g. 
As was shown in [i, 5], if we ignore the friction of air against the surface of a free 

jet of a viscoelastic drop liquid in the case of long-wave perturbations, the stresses ans 
and ~bs in the jet are negligible compared to the axial stress au: s~z = O(e~l~), 6b: = O(effll), 
eNao/11<<L The smallness of the stresses ~163 and ~bs indicates that the liquid section of 
the jet remains planar during its bending. The equality Cnn = abb in the jet is a conse- 
quence of the boundary conditions for the stresses on the jet surface, this equality indi- 
cating that the deformation of the liquid section in mainly isotropic, Thus, an imaginary 
liquid disk cut from a jet of circular cross-section subjected to bending rotates and 
stretches along the axis of the jet but retains its circular cross-section. This pattern 
does not change with an increase in the amplitude of the perturbations as long as the motion 
is long-wave in character and no local sections of large curvature develop on the jet. Such 
sections develop only for very large perturbation amplitudes [i]. All this suggests that 
the increase in both infinitely small and in finite, long-wave flexural perturbations of jets 
of high-viscosity liquids moving in air correspond to uniaxial tension of the jets in the 
coordinate system connected with the jet axis. As a result, the tensors ~(t), Vw, and D 
are diagonal in the basis n, b, I. Accordingly, we can represent the tensor F~(t) (as Vw 
and D) in the form F~(t) = lllu~(nn+bb)/nn and, by virtue of the diagonality, assume that 
Vw = D. Consequently, by integrating (3.6) with allowance for (3.1) and (3.4), we find the 

~'t components of the tensor F@( ): 

lu=l+y~[H(s,t)--H(s,~)]+~tL--jT.j --L 0s Jj + 

+ -2-Yl Lr0lHs~(s' t) 0lH (S,0s s m)]z+ (~)~ sinl (~ ~\ao, [A! (t)2+ A~ (~) -- A (t)A (~)] + O(Ja),, 

f ~ : =  i - - ~ / ~  [H (s, t) - - H ( s ,  ~)1 - -  T ( L - - ~ ; - - ;  J - -  

- -  L T J  J + T L " -a'~ ~ a:~ - 2 ~aoJ '~ao] L 2 

It should be noted that in integrating (3.6), we assumed the following, with an accuracy 
sufficient for subsequent calculations 
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UF* (t) !! ~ + (nn + bb) el,,,, ~ OH 
dt = --ot -T~ + vn .[ll/u + (nn + bb)fn,~],, v,, = ~-. 

Using ( 3 . 7 )  t o  c a l c u l a t e  t h e  Green t e n s o r  f o r  bend ing  B~( t )=  F:(t).F~'(t) and i n s e r t i n g  i t  i n t o  
( 2 . 1 0 ) ,  we d e t e r m i n e  t h e  d i f f e r e n c e  o f  t h e  components  o f  t h e  s t r e s s  t e n s o r  d e v i a t o r  f o r  t h e  
Maxwell l i q u i d  ( t h i s  d i f f e r e n c e  i s  needed  to  c a l c u l a t e  L : )  

o':, - -  O 'nn '=  0'o + "--3y(:~2sin[~[A(t)--,,(t)]T:k~oj (g)[A'(t)--~;z(t)]+- ~ y~ sin' X 
kao ] " k%] _ 

3 (X)'sin2/~l[A2(t) --2A(t),,(t)+ r (3.8) X [A s (t) --  2A (t) , ,  it) + ~?~. (t)] + ~- ~ k % /  

where 

~ A , t ) = O - '  ; d~exp(--~--Y-)A(~;).  , , ( t )  ----0,1 ~dzexp(,5~)A2(,),: 
moo --oo 

( 3 . 9 )  

'0 '0 while oo=o'u--(Ynn characterizes the initial surface tension of the jet. 

Inserting (3.4), (3.5), and (3.8) into (3.3) and integrating with allowance for (3.1), 
we have 

+ + 
ao"- 2 ,o \_o 

I o = na~/4. 
( 3 . 1 0 )  

The higher-order terms with respect to perturbation amplitude and the terms through the thick- 
ness of the jet (long-wave approximation, thin jet) are discarded. 

Using (3.2) and (3.10) to make up the energy balance L = AE + &E: + L:, we obtain the 
following equation for the amplitude of the perturbation A(t): 

A"+ 3-- ~---x'Y* 3 ~x4A(AYI+Y2)'~2 Ax2~ ~ pl~/O 2 O'o(t)]__O 

p=g v + 7 po~ o Lp=~ p=~ + ~ - , �9 Pa0 J (3.11) 
IO '0 oo (t) = [a, ,  (0) - -  o.. (0 ) ]  exp ( - -  t/O),, 

The functions Y:(t) = A - 9: and Y2(t) = A 2 - 92 entering into (3.11), with allowance for 
(3.9), are determined by integration of the following differential equations together with 
(3.11): 

�9 t 
YI=A' Y,IO, Y'= -- -- ~ 2AA' Y~/O. (3.12) 

It should be noted that if we do not make simplifications leading from (2.8) to (2.9) and 
we use (2.8) directlY, then�9 instead of the term W I = AxZoo(t)/(p~) in Eq. (3.11) we will have 
W2= AxZo0(t)[i + ~(A)]/(p~), ~(A)~O(A). As it turns out, this change of terms may change the 
result of calculation of the nonlinear stage of bending, when there is a stress o0(t) ~ 0 
caused by the initial longitudinal surface tension of the jet. However, as follows from [i, 
3-5] and from the results of the calculations discussed in Part 4, nonlinear effects will be 
important only over a period of time exceeding the relaxation time for the stress o0(t), when 
W I and W 2 are nearly equal to zero. This justifies the transition from (2.8) to (2.9) in 
the derivation of Eq. (3.11), which is nonlinear with respect to the amplitude A. 

Performing similar calculations for the DE liquid, we obtain the following by means of 
Eqs. (2.11), (3.1), (3.4), (3.5), and (3.7) 

4 ~ 4 [ PxU~ 6 aoz ~ ~ Y:j 6 GOZA ~ AY,~+Y~j + A ~  5 %(0] A" + 
7 + :: J' " 

O, 

where 

Y*i = A' -- Y,j/Op, Y2i = 2AA' -- Y2j/Oi, 

(3.13) 

t 

--co 
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t 

-~  (3 .14)  

'e % ( t ) =  ~ [~,5(o)-oj.~(O)]exp(-t/oA. 
4dd =~ 

4. First we will examine small perturbations, when the terms in (3.11) and (3.13) which 
are nonlinear with respect to A [the third terms O(A3)] can be ignored. In this case, A = 
A 0 exp (yt) (y is the increment and A 0 is the amplitude of the bending perturbation at t = 0). 
Also, 

r l  = ygA/(t  + 78), Y 2 -  2yOA2/(1 q- 2yO), ( 4 . 1 )  

and we o b t a i n  t h e  f o l l o w i n g  c h a r a c t e r i s t i c  e q u a t i o n  from ( 3 . 1 1 )  and ( 3 . 1 2 )  f o r  a Maxwell 
l i q u i d  

4 9a~(t+?0) ? §  % p~ 9a~ = 0 .  ( 4 . 2 )  

Here ,  i t  i s  assumed t h a t  i n i t i a l  s u r f a c e  t e n s i o n  i s  e i t h e r  a b s e n t  f rom t h e  j e t  (o0 = 0) or  
i s  " f r o z e n "  and t h a t  o0 = c o n s t  m 0. 

E q u a t i o n  ( 4 . 2 )  g e n e r a l i z e s  t h e  c h a r a c t e r i s t i c  e q u a t i o n  f o r  a v i s c o u s  Newtonian f l u i d  
[1,  3] w i t h  8 = 0 t o  t h e  c a s e  o f  a v i s c o e l a s t i c  Maxwell l i q u i d .  I t  p r e d i c t s  ( a t  o 0 : 0) ac-  
c e l e r a t i o n  o f  t h e  growth  of  s m a l l  bend ing  p e r t u r b a t i o n s  o f  a j e t  o f  a Maxwell l i q u i d  compared 
t o  a comparab le  j e t  o f  a Newtonian f l u i d  (p ,  ~, a0 ,  a ,  U 0 = idem) due t o  a d e c r e a s e  in  e f -  
f e c t i v e  v i s c o s i t y  ~e = ~ / (1  + ~B). I n i t i a l  s u r f a c e  t e n s i o n  o 0 > 0 i s  a s t a b i l i z i n g  f a c t o r  
which r e t a r d s  t h e  growth  of  t h e  p e r t u r b a t i o n s  ( t h e  v a l u e  ~ > 0 d e c r e a s e s )  o r  in  g e n e r a l  p r e -  
v e n t s  t h e  deve lopmen t  o f  f l e x u r a l  p e r t u r b a t i o n s  a t  (o0 + ~ / a 0 )  > pzU~, when Re {~} < 0. The 
r e s u l t  o b t a i n e d  in  [ 6 ] ,  in  which a j e t  was r e p r e s e n t e d  as  a t e n s e d  s t r i n g ,  i s  t r a n s f o r m e d  
at the long-wave limit to Eq. (4.2), with ~ : a : 0. 

The solution of the problem of the bending of a jet of a Maxwell liquid in a flow of air 
depends on eight parameters having three independent dimensions: ~, p, a0, =, Pz, U0, 8, o0. 
Thus, in accordance with the ~-theorem of dimensional theory, the solution is determined by 
five similarity criteria: 

H3= PIU~ 

mopzVo "--~'-~ 
(4 .3 )  

~0 H5 
H 4 = pzU~, PzUoa o 

Figure i shows the functions ~(X) calculated by means of Eq. (4.2) with the following 
values of the parameters: for all curves N 1 = i0 -3, H4 = 0; for i and 2 H 2 = 0.156-104, H 5 = 
0.94"10-3; 3 and 4 N 2 = 0.4.104, H 5 = 2.4.10-3; 2 and 4 H~ = 0; i and 3 N~ = 0.64, H a = 0.25. 
Lines i and 3 correspond to two jets of a Maxwell liquid differing in velocity, the velocity 
being greater in the first case. Lines 2 and 4 correspond to the results of i and 3 for a 
Newtonian fluid. There is a marked difference between the results in our Fig. i and the re- 
suits in Fig. 4 of [8] (which correspond to the same parameter values). For example, the in- 
crement of Ymax for curve i is roughly 30% greater in our calculation than in [8]. This evi- 
dently makes it possible to evaluate the error introduced by the simplifications of the char- 
acteristic equation in [8]. As a result of these simplifications, the value of 7 was reduced 
to the second order of magnitude. Line 2 in Fig. 2 shows the dimensionless function 7(X) de- 
termined by characteristic equation (4.2) for a Maxwell liquid with H l = i0 -s, H 2 = 0.4"10 ~, 
H3 = 0.25, H4 = Hs = 0, while line i shows the result for a corresponding jet of Newtonian 
fluid (Hz, H2, H~, H s = idem, ~a = 0). The increment is referred to the below quantity T -z 

The characteristic equation for small flexural perturbations of a jet of a DE liquid, 
when A = A 0 exp (~t), 

: YI! = y0jA/(t ~- ?Oj), Y2s = 2701A2/( t Jr 2?0s)~ (4.4) 

is obtained from (3.13), with c 0 = const, in the form 

S G0Z' y , , ~  ~ + X 2 ( a  p~U~ % )  ~ +  ~ O~ (4.5) 
~odd=l 
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With allowance for the second equation of (1.2), as before the similarity criteria will be 
HI-H s from (4.3). To these criteria we add a criterion which determines the ratio of the 
spectral relaxation times H m = 8k/8 p. Curve 3 in Fig. 2 shows the relation 7 = 7(X) cal- 
culated as the solution of characteristic equation (4.5) for the same values of the criteria 
HI-H s as for curve 2 and five relaxation modes (j = i, 3, 5, 7, 9). A change in the number 
of modes in the calculation has a very slight effect on the result. In fact, the relation 
Y = 7(X) predicted by characteristic equation (4.5) for a jet of DE liquid coincides with the 
result obtained in the solution of Eq. (4.2) for a jet of Maxwell liquid with the same val- 
ues of Hx-H s. 

It should be noted that by virtue of (4.5), the initial surface tension o 0 > 0, as for 
the jet of Maxwell liquid, slows the development of small flexural perturbations. At (a 0 + 
~/a0) > piU~, the jet is completely stabilized. 

Let us proceed to analysis of the growth of fairly large flexural perturbations, when 
the terms in Eqs. (3.11) and (3.13) (third terms) which are nonlinear with respect to the 
amplitude A are important. In the case of a Maxwell liquid, it is necessary to numerically 
integrate system (3.11) and (3.12) with the initial conditions 

t = 0, A= Ao, A' = Ao?., Yx = ?.0Ao/(t + ?,0), (4.6) 
Y~ = 2~,0A~/(t+ 2~,0f. 

In (4.6), the value of the increment ~, corresponds to the maximum 7max determined by char- 
acteristic equation (4.2). Thus, in calculating the nonlinear evolution of flexural pertur- 
bations, we assume X = X,. Here, the value of the dimensionless wave number X, corresponds 
to Ymax: Y* = Ymax = Y(X,). Conditions (4.6) correspond to initially small perturbations, so 
that the initial conditions for functions YI and Y2 are determined by means of (4.1). 

Curve 1 in Fig. 3 shows the results of calculations for a jet of a Maxwell liquid with 
H l = 10 -s, H 2 = 0.4-104 , H S = 0.25, H4 = Hs = 0, while curve 2 shows the result for a cor- 
responding jet of Newtonian fluid (H S = 0). In this and subsequent figures, the amplitude 
of the flexural perturbation of the jet of viscoelastic fluid Hma x = A is referred to the 
wavelength of the perturbation 11. = 2~=0/X,, while the time is referred to T = (Fp4)1~/(piU~" 
~/a0)2/s; Y =]n(Hma~ll,). For the Newtonian fluid, the amplitude of the perturbation Hma x 
. . . . . .  / [  8 p~ . 1 ~ / 6  
is referred to the wavelength of the perturbation Z~,=2aao/X.=2Xao][~VX(p,U:--~/ao) ] [,,4,5]:i; 

Y= ]n(Hmax/Iz*). In accordance with the data in Figs. 1 and 2, 12. > l**. The difference in Y 
in Fig. 3 for the viscoelastic and Newtonian fluids with a fixed value of t is evidently due 
not to the difference in the scales of Iz, and /1,,but to the different rates of development 
of small perturbations. In the calculations, we assumed that Aa/l** = 5"10 -~, Ao/l~, = 5"10-4. ' 

It follows from Fig. 3 that in the case of the viscoelastic Maxwell fluid - in contrast 
of the monotonic (slowed by stresses associated with a nonlinear effect - the elongation of 
the jet axis) increase in flexural perturbations of the jet of Newtonian fluid - a new non- 
linear effect is seen - oscillations of the amplitudes of the perturbations. These oscilla- 
tions, which result in a decrease in the amplitude of the disturbances over certain time 
intervals, are the result of the competition of inertial and elastic forces. The jet ele- 
ement undergoing bending jumps past its "equilibrium" position due to inertia, and the axis 
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of the jet is additionally elongated (due to the finiteness of the perturbations, the length 
of the jet axis is constant during thelinear stage), which produces an additional elastic 
force along the element that tends to contract it. Thus, the inverse process begins: short- 
ening of the element, a reduction in the amplitude of the flexural perturbation, a new jump 
past the "equilibrium" position due to inertia, etc. Viscous dissipation gradually absorbs 
the energy of these oscillations. 

It is this very mechanism that is evidently also responsible for oscillations of the 
surface of a straight jet of a Maxwell liquid during capillary decay, discovered in calcula- 
tions in [16], and the oscillations in the solutions of other nonsteady problems of the dy- 
namics of viscoelastic fluids when allowance is made for their inertia. 

In calculating the growth of finite flexural perturbations of a jet of DE liquid, the 
following initial conditions are established for system (3.13) with allowance for (4.4) 

t = 01 A = Aoz A' = Ao?,~ Y~j = ?,0jAo/(t + ?,0j), ( 4 . 7 )  

Y2~ = 2?,OjA~/(i + 2?,O j). 

I n  c o n d i t i o n s  ( 4 . 7 ) ,  t h e  i n c r e m e n t  X, ,  a s  t h e  v a l u e  • = •  i n  ( 3 . 1 3 ) ,  i s  d e t e r m i n e d  by t h e  
m o s t  r a p i d l y - g r o w i n g  s m a l l  p e r t u r b a t i o n ,  i . e . ,  i t  c o r r e s p o n d s  t o  X, = •215 i n  t h e  s o l u -  
t i o n  of characteristic equation (4.5). The results of the calculation for a jet of DE liquid 
with HI = 10-3, ~2 = 0.4"i0~, H3 = 0.25, H~ = N s = 0 and five modes in the relaxation spec- 
trum nearly coincides with curve 1 in Fig. 3. Line i in Fig. 4 shows the coincident results 
of calculations for jets of M and DE liquids (j = i ..... 9) with H l = 10 -3 , H2 = 0-156"104, 
E 3 = 0.64, n~ = Hs = 0, while line 2 shows the result for a corresponding jet of Newtonian 
fluid (Sa = 0). 

The calculations performed with the M and DE rheological models show that the oscilla- 
tions which accompany the nonlinear stage of growth of flexural perturbations are reinforced 
with an increase in the similarity criterion H 3 while Hi (i z 3) remain constant. Since the 
increase in E3 is equivalent to a reduction in the elastic modulus of the liquid, an increase 
in 53 is accompanied by an increase in the "compliance" of the liquid and facilitation of the 
inertial jump past the "equilibrium" position. 

Use of the DE model, which ignores the details of "rapid" relaxation processes, is justi- 
fied by the data in Figs. 3 and 4 if t o = 20T ~ 81 and ~ ~ @i i. The latter condition is sat- 
isfied in the present case. 

Figure 5 shows the results for an M liquid with the same values of parameters ~I-H3, Hs 
as in Fig. 3 but with initial surface tension o0(0) = oIU~/I.I. We examined two variants: 
with the initial stress "frozen" and remaining constant during bending of the jet (curve i); 
with the initial surface tension relaxing in accordance with the second equation of (3.11) 
(curve 2); curve3 shows the results for the corresponding jet of Newtonian fluid. Comparison 
of lines 1 and 2 with each other and with line I in Fig. 3 illustrates the stabilizing role 
of longitudinal surface tension in the process of development of perturbations. Of course, 
in the case of a "frozen" value of o0, the stabilizing effect of longitudinal surface tension 
during perturbation growth is considerably greater. 

Figure 6 shows results corresponding to a jet of DE liquid (the values of ~z-~, ~5 are 
the same as in Fig. 3, and we considered five relaxation modes) with o0(0) = piU~/l.l. Line 
I, obtained for o 0 = const, nearly coincides with line i in Fig. 5. Line 2 corresponds to 
the relaxation of the initial stress in accordance with the third equation of (3.14) and of 
course differs from line 2 in Fig. 5, since relaxation of the initial surface tension pro- 
ceeds differently in jets of M liquids (single-mode model) and DE liquids (multiple-mode 
model); line 3 shows results for the corresponding jet of Newtonian fluid. 
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PHYSICAL MODELING OF TURBULENT THERMICS 

Yu. A. Gostintsev, Yu. S. Matveev, 
V. E. Nebogatov, and A. F. Solodovnik 

UDC 536.253+532.529 

In order to investigate atmospheric convection processes and the development of safe 
methods of exploiting and storing explodable and toxic mixtures, and a number of ecological 
problems, it is necessary to study nonstationary convective flows that occur when a mass of 
light gas rises in a field of gravitational forces (thermics). Large-scale turbulent flows 
are of greatest interest from the practical viewpoint since the general complexity of study- 
ing them is due to the restricted possibility of obtaining direct experimd~tal data. In this 
connection, a study of the modeling laws for turbulent thermics acquires special value. 

At a certain time, let there be a free volume V 0 of gas with density P0 different from 
the density Pa of the environment, in open space. The convective current that occurs is due 
to the action of the force F = g(Pa - P0)V0, the resultant of the Archimedes and gravity 
forces. For currents in an unstratified medium the quantity F is conserved in time: F = 

g ; (pa- p(t))dV-~-g(pa--po)Vo, which is a result of the law of conservation of the excess quantity 
v== 
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